
Project systems theory – Solutions
Final exam 2016–2017, Thursday 26 January 2017, 9:00 – 12:00

Problem 1

Consider the model

ṗ(t) =
(

2− 1
6p(t)−

1
4q(t)

)
p(t), (1)

q̇(t) =
(

1
4p(t)−

1
2 − u(t)

)
q(t), (2)

y(t) = p(t) + q(t). (3)

(a) As equilibrium solutions are constant solutions, their time derivatives are zero. Thus, con-
sidering (2) for q̇ = 0 leads to

0 =
(
1
4 p̄−

1
2 − 1

)
q̄, (4)

which has the solutions q̄ = 0 and

p̄ = 4 3
2 = 6. (5)

As we are interested in an equilibrium for which both p̄ > 0 and q̄ > 0, the first solution is
discarded. Then, considering (1) for p̄ = 6 yields

0 = 2− 6
6 −

1
4 q̄ ⇒ q̄ = 4. (6)

Thus, the desired equilibrium solution is[
p̄
q̄

]
=

[
6
4

]
, (7)

and note that the corresponding output reads ȳ = 10.

(b) For ease of notation, define

x =

[
x1
x2

]
=

[
p
q

]
, x̄ =

[
p̄
q̄

]
, (8)

and let the function f be given by

f(x, u) =

[ (
2− 1

6x1 −
1
4x2
)
x1(

1
4x1 −

1
2 − u

)
x2

]
. (9)

Then, the linearization of the dynamics (around the equilibrium x̄ for constant input ū = 1)
is given by

˙̃x(t) =
∂f

∂x
(x̄, ū)x̃(t) +

∂f

∂u
(x̄, ū)ũ(t), (10)

with the perturbations are defined as

x̃ = x− x̄, ũ = u− ū. (11)

Computation of the partial derivatives leads to

∂f

∂x
(x, u) =

[
2− 1

3x1 −
1
4x2 − 1

4x1
1
4x2

1
4x1 −

1
2 − u

]
,

∂f

∂u
(x, u) =

[
0
−x2

]
, (12)
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such that evaluation at the equilibrium solution yields

A =
∂f

∂x
(x̄, ū) =

[
−1 −1.5
1 0

]
, B =

∂f

∂u
(x̄, ū) =

[
0
−4

]
. (13)

Note that the output equation is linear, which can be written in the perturbation coordinates
as

ỹ = Cx̃, C =
[

1 1
]
, (14)

where ỹ = y − ȳ. Then, the final linearized reads

˙̃x(t) = Ax̃(t) +Bũ(t),

ỹ(t) = Cx̃(t),
(15)

with the matrices A and B as in (13) and C as in (14).

(c) Stability of the linearized system (15) is determined by the eigenvalues of the matrix A given
in (13). In order to compute the eigenvalues, compute

det
(
λI −A

)
=

∣∣∣∣ λ+ 1 1.5
−1 λ

∣∣∣∣ = (λ+ 1)λ+ 1.5 = λ2 + λ+ 1.5. (16)

Thus, the roots of the characteristic equation

λ2 + λ+ 1.5 = 0, (17)

are sought. Note that stability can also be determined by applying the Routh-Hurwitz
criterion to the polynomial (16). Solving (17) using the quadratic formula gives

λ =
−1±

√
12 − 4 · 1.5
2

= − 1
2 ±

1
2

√
5i. (18)

Note that the real parts of both roots are strictly negative, such that the linearized system
is asymptotically stable.
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Problem 2

Consider the polynomial

p(λ) = λ4 + aλ3 + 4λ2 + 2aλ+ b, (19)

with a and b real numbers. To determine whether the polynomial (19) is stable, consider the
following table:

λ4 λ3 λ2 λ1 λ0

a× 1 a 4 2a b
1× a 2a

a2 2a 2a2 ab (step 1)
2× a 2 2a b (after dividing by a, note a 6= 0)
a× 2 b

a(4− b)× 4 a(4− b) 2b (step 2)
4× a(4− b)

a2(4− b)2 2ab(4− b) (step 3)

On the basis of the table, the following conclusions can be drawn. Considering the initial
polynomial, it is necessary for stability that all coefficients have the same sign. This immediately
leads to the conditions a > 0 and b > 0.

Since a > 0, division by a after step 1 is allowed. Then, following the same reasoning for the
polynomial obtained after step 2, it is necessary that 4− b > 0, i.e., b < 4.

Finally, the polynomial obtained after step 3 reads

a2(4− b)2λ+ 2ab(4− b) = 0. (20)

Since a(4− b) > 0 (as a > 0 and 0 < b < 4), division by a(4− b) > 0 leads to

a(4− b)λ+ 2b = 0 ⇒ λ = − 2b

a(4− b)
, (21)

such that λ < 0 for all a > 0 and 0 < b < 4, i.e., the polynomial obtained after step 3 is stable.
Consequently, the polynomial (19) is stable for all parameters satisfying

0 < a, 0 < b < 4. (22)
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Problem 3

Consider the system

ẋ =

[
−3 1
2 2

]
x+

[
−1
1

]
u. (23)

(a) Controllability can be evaluated by computing the matrix

[B AB ]. (24)

Computing terms individually leads to

B =

[
−1
1

]
, AB =

[
4
0

]
, (25)

such that

[B AB ] =

[
−1 4
1 0

]
. (26)

It is readily seen that the rank of this matrix equals 2, such that (23) is controllable.

(b) Since (23) is controllable, there exists a nonsingular matrix T such that

T−1AT =

[
0 1
α1 α2

]
, T−1B =

[
0
1

]
.

for some real numbers α1 and α2. In fact, this form is known as the controllable canonical
form and the parameters αi equal the coefficients (but with negative sign) of the characteristic
polynomial of A. As such, these can be computed by considering

det
(
λI −A

)
= (λ+ 3)(λ− 2)− 2 = λ2 + λ− 8, (27)

= λ2 + a1λ+ a2 (28)

with a1 = 1 and a2 = −8. It then holds that

α1 = −a2 = 8, α2 = −a1 = −1. (29)

The corresponding transformation matrix T can be constructed by considering the vectors
q1 and q2 as

q2 = B =

[
−1
1

]
, (30)

q1 = AB + a1B = AB +B =

[
4
0

]
+

[
−1
1

]
=

[
3
1

]
, (31)

after which the matrix T can be constructed as

T = [ q1 q2 ] =

[
3 −1
1 1

]
. (32)

Note that

T−1 = 1
4

[
1 1
−1 3

]
, (33)

after which it is easily checked that

T−1AT = 1
4

[
1 1
−1 3

] [
−3 1
2 2

] [
3 −1
1 1

]
= 1

4

[
1 1
−1 3

] [
−8 4
8 0

]
=

[
0 1
8 −1

]
, (34)

T−1B = 1
4

[
1 1
−1 3

] [
−1
1

]
=

[
0
1

]
. (35)
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(c) In order to place the eigenvalues of A+BF at −1 and −2, consider the polynomial

(λ+ 1)(λ+ 2) = λ2 + 3λ+ 2 = 0, (36)

which has the desired eigenvalues as roots (and is monic). Define a matrix

F̄ =
[
F̄1 F̄1

]
(37)

and let Ā = T−1AT , B̄ = T−1B as in (34) and (35), respectively. Then,

Ā+ B̄F̄ =

[
0 1

8 + F̄1 −1 + F̄2

]
, (38)

which has the characteristic polynomial

λ2 + (1− F̄2)λ+ (−8− F̄1) = 0. (39)

Matching coefficients of (39) and (36) leads to

F̄1 = −10, F̄2 = −2. (40)

Next, noting that

T (Ā+ B̄F̄ )T−1 = TĀT−1 + TB̄F̄T−1 = A+BF̄T−1, (41)

leads to the desired feedback F as

F = F̄ T−1 = 1
4

[
−10 −2

] [ 1 1
−1 3

]
=
[
−2 −4

]
. (42)
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Problem 4

Consider the system

ẋ =

−2 0 0
−3 1 4
−1 1 −2

x+

 4
0
−1

u, y =
[

0 1 0
]
x. (43)

(a) Note that the system matrix has a block-triangular structure

A =

−2 0 0
−3 1 4
−1 1 −2

 , (44)

of which the upper-left block is stable (i.e., it has eigenvalue −2). The eigenvalues of the
lower-right can be obtained by solving

0 = det
(
λI −A22

)
=

∣∣∣∣ λ− 1 −4
−1 λ+ 2

∣∣∣∣
= (λ− 1)(λ+ 2)− 4 = λ2 + λ− 6 = (λ+ 3)(λ− 2), (45)

leading to the eigenvalues λ1 = −3 and λ2 = 2. As λ2 > 0 (more formally, Re(λ2) > 0), the
system (43) is not (internally) stable.

(b) Controllability can be checked by computing

[B AB A2B ] =

 4 −8 16
0 −16 0
−1 −2 −4

 . (46)

It is clear that the first and third column are linearly dependent, such that the rank of this
matrix equals 2. Consequently (as 2 < 3), the system is not controllable.

(c) The reachable subspace W is given by

W = im[B AB A2B ], (47)

such that, using (46),

W = im

 4 −8
0 −16
−1 −2

 = im

 4 0
0 −16
−1 −4

 = im

 4 0
0 4
−1 1

 . (48)

(d) The system (43) is stabilizable if

rank[ λI −A B ] = 3 (49)

for all λ such that Re(λ) > 0 (i.e., for all unstable eigenvalues). As a result of (a), only the
eigenvalue λ2 = 2 is unstable, leading to

[ λ2I −A B ] =

 4 0 0 4
3 1 −4 0
1 −1 4 −1

 , (50)

which can be seen to have rank 3. Consequently, the system is stabilizable.

(e) To evaluate whether (43) is observable, consider the matrix C
CA
CA2

 =

 0 1 0
−3 1 4
−1 5 −4

 . (51)

It can be seen that this matrix has rank 3, such that the system is observable.

(f) As the system is observable (see (e)), it is detectable.
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Problem 5

Consider the linear system

ẋ = Ax+Bu,

y = Cx,

with x ∈ Rn, u ∈ Rm, and y ∈ Rp. Let W and N be the reachable subspace and unobservable
subspace, respectively, and denote the impulse response as

h(t) = CeAtB.

To show that h(t) = 0 for all t ∈ R if and only if W ⊂ N , necessity and sufficiency are considered
separately. Note however that there are various other approaches for proving the result.

(if) Recall the definitions of W and N as

W = im
[
B AB · · · An−1B

]
, N = ker


C
CA

...
CAn−1

 . (52)

Then, the condition W ⊂ N implies that
C
CA

...
CAn−1

 [B AB · · · An−1B
]

= 0, (53)

such that

CAkB = 0 (54)

for k = 0, 1, . . . , 2n− 2. By Cayley-Hamilton, the condition (54) holds in fact for all nonnegative
integers k. Using the Taylor series expansion of the matrix exponential, it holds that

h(t) = CeAtB = C

( ∞∑
k=0

tkAk

k!

)
B =

∞∑
k=0

CAkB
tk

k!
= 0, (55)

which finalizes the proof of this part.
(only if) To prove the converse, the Taylor series expansion (55) can be used to conclude (54)

(for all nonnegative integer k), which in turn implies (53) and proves the result W ⊂ N .
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